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Abhct-The mathematical structure of a set of the KekulC patterns for a polycyclic aromatic hydrocarbon has 
been analysed graph-theoretically. By defining the proper and improper sextets, sextet pattern. Clar transformation, 
and sextet rotation, one can prove the important property of the sextet polynomial Be(x) as B,(I) = K(G), where 
K(G) is the number of the KekulC patterns for thin polyhex graph G. For fat polyhex graphs such as coronene the 
above relation is found to be also valid by introducing the concept of a super sextet. All the KekulC patterns for a 
given G are shown to form a hierarchical tree structure by the sextet rotation. The theory developed in this paper 
gives a mathematical basis and interpretation for the concept of the Clar’s aromatic sextet. 

It has been established that the valence bond and mole- 
cular orbital methods are closely related through their 
simplest but mathematically neatest variants, namely, the 
resonance theory and Hiickel MO method especially for 
conjugated hydrocarbons. In this respect the Kekult 
pattern” plays one of the key roles in understanding the 
mathematical structure of the intimate relations between 
the resonance theory and MO method. 

Various methods for enumerating the number K(G) of 
the Kekule patterns for a polyhex graph G have been 
proposed and analysed from the graph-theoretical stand 
point.‘-’ The relation between K(G) and the stability of 
the r-electronic system have also been analysed. The 
numbers of the Kekult patterns for the partial structures 
of the graph are good indices for the distribution of the 
Irelectrons, e.g. bond orders, and the aromatic character 
of benzene rings.“’ However, very few studies have 
been done on the mathematical structure of the set of the 
Kekule patterns.%13 

On the other hand, from a purely empirical stand point 
Clar has shown that various electronic properties of 
polycyclic aromatic hydrocarbons can be predicted by 
appropriately defining an aromatic sextet for their 
Kekule patterns,” 

aromatic sextet 

(Clar) (1) 

“We will use the term “KekulC pattern” instead of the cur- 
rently adopted term “KekulC structure” from several reasons 
which will gradually be clear in the later discussion. 

The present authors have proposed the sextet poly- 
nomial BG(x) and shown that through this polynomial 
many of the graph-theoretical quantities proposed so far 
by many authors are interrelated with one another and 
even with the Clar’s postulate. The followiny important 
relation 

Be(l) = K(G) 

was found for all the catacondensed and some groups of 
pericondensed aromatic hydrocarbons.’ 

However, most of the above interesting relations have 
not yet fully been proved. The aim of the present paper 
is to analyse the mathematical structure of a set of the 
KekulC patterns and to settle the mathematical inter- 
pretation for the concepts of the aromatic sextet and the 
related quantities. 

DEFINITIONS 

In this paper we will analyse the mathematical struc- 
ture of the set of the KekulC patterns of the polycyclic 
benzenoid aromatic hydrocarbons with a singlet ground 
state. As far as the Irelectronic approximation is taken 
the graphs to be treated are the polyhex graphs cor- 
responding to the C atom skeletons of unsaturated 
hydrocarbon molecules. Several important concepts will 
be defined first. 

Polyhex graph and Kekuli pattern 
A polyhex graph is a graph composed only of hex- 

agons. Let us confine ourselves to those polyhex graphs 
which have even number, 2n, of points and can be 
spanned by n disjoint lines as in 

1 
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which will be denoted as below 

and called as a Kekule pattern (kJ composed of alternat- 
ing single and double bonds. Let the number of the 
Kekult! patterns, or the maximum matching number, of a 
given polyhex graph G be denoted as l{ki}l, or K(G). 

The following graphs 3-6 will be excluded from our 
discussion, since 3 and 4 have odd number of points, 

while for 5 and 6 we have K(G) = 0. 

proper sextet improper sextet 

in a given Kekult pattern be called, respectively, as 
proper and improper sextets. 

Among the Kekult? patterns ki-k, of graph 2 in Fig. I, 
patterns k, and k, differ only in the left-end hexagon. 
According to Clar (eqn I) one can draw a circle 
representing an aromatic sextet in the hexagon con- 
cerned,14 

lh 

Different combinations among these KekulC patterns 
The dual graph of a polyhex graph G is defined as a gives 

graph obtained from G by joining the centers of the 
neighboring hexagons. A polyhex graph is called as 
catahex or perihex, depending that its dual graph is a tree 
or non-tree.’ The following are some examples of a (kn, k,) - 
catahex (7) and perihexes (8,9) on which their cor- 
responding dual graphs are overlapped. 

It may be worth noting here that although the number 
of the catafusene isomers can be enumerated by use of 
the counting polynomial,15 it seems almost impossible to 
get systematically the counting polynomial for the peri- 

I&t 

fusene isomers.“j In the following discussion, it will be 
clear that for a polyhex graph which is “fat” enough to 
contain a coronene skeleton 9 one has to correct the 
theory developed for the “thin” polyhexes to some Further by combining 1Oa-d we get the relation 
extent and the number of the correction terms gets larger 
as the graph swells. 

Proper and improper sextets and sextet rotation 
In order to simplify the discussion, a polyhex graph is 

10 be placed on a plane so that a pair of edges of each 
hexagon lie in parallel with the vertical line. Let the sets 
of the circularly arranged three double bonds as shown 

in which the two sextets are resonant. 

1Oe 

‘The catahex (catafusene) and perihex (perifusene), respec- In this way one can derive various patterns in which 
tively, correspond to the catacondensed and pericondensed aromatic sextets are placed on the component hexagons. 
aromatic hydrocarbons. By transforming the remaining double bonds in these 
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Kekulk pattern Clor transformotlon Sextei pattern Resonant sextet number 

c 

s. 

% 1 

S. 1 

r(G. 2; = 2 

r(G,O)-I 

K(G)= ‘k I’ 
1 I I ,s,* = 9,(l) 

Fig. I. One-to-one correspondence between the sets of the KekulC {ki) and sextet {sJ patterns. These patterns are 
classified into classes with respect to the number of the resonant sextets to give the resonant sextet numbers. 

patterns into single bonds one can get various “sextet 
patterns” (Fig. 1) as 

Note, however, that the following sextet pattern is not 
allowed to draw, since its parent pattern does not belong to 
the family of the Kekule patterns. 

0 & 
Sextet polynomiaP 

Now for a given polyhex graph one can draw a set of 

(lot, IW _3 % 
sextet patterns with various numbers of (resonant) sex- 
tets including the zero-sextet pattern. Let the number of 
the sextet patterns of G with k resonant sextets be 
denoted as r(G, k). The total number of the sextet pat- 

0 

terns {s,} is 

0 
0 

I{sJl= kgo rG k), 
wk) _+ 5 

where m is the largest number of k. The sextet poly- 
nomial BG(x) for a polyhex graph G is defined as 

For the later discussion let us define the zero-sextet 
pattern with no sextet for any polyhex graph, as B,(x) = 2 r(G, k) * xk. 0) 

k-0 

It is obvious from the above definition that for any 

'7 
polyhex graph there is one and only one zero-sextet 
pattern, i.e. 

r(G,O)= 1. (3) 
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In Fig, 1 are shown the sets of the KekulC patterns {ki} 
and sextet patterns {SJ for graph 2. At a first glance the 
relation between them seems to be rather entangled. 
However, generally for the thin polyhexes with K(G) f 0, 
it was found that 

or 

K(G) = Bd( 1). (4’) 

Clar transformation and sextet rotation 
Define the Clar transformation (C) as a simultaneous 

substitution of all the proper sextets by circles in a given 
KekulC pattern ki followed by the transformation of the 
remaining double bonds into single bonds, 

lc)Fz$ (5) 

as exemplified for graph 2 in Fig. 1. It can symbolically 
be written as 

C(ki) = si. (5’) 

Define the sextet rotation (R) as a simultaneous rota- 
tion of all the proper sextets in a given Kekult pattern ki 
into the improper sextets to give another KekulC pattern 
kj, 

)?pj+@$ @’ 

or symbolically as 

R(ki) = kj. (6’) 

For example, we get R(k,) = k7 for graph 2. Note that for 
such ki with no proper sextet, e.g. k7 in Fig. I, one 
cannot operate the sextet rotation. In this case let us put 
it down as 

R(k) = 4, 

and call such ki as the root Kekule pattern. 
In the same way the counter-sextet rotation (R) is 

defined as follows: 

Note that the operation R is not the inverse of I? and 
oice versa. 

‘Here m is the maximum number of the proper sextets. See eqn 
(2). 

OBSERVATION 

Since several patterns and operations have been 
defined for polyhex graphs, let us observe how all the 
Kekult and sextet patterns are related to one another by 
taking graph 2 as an example. As evident from Fig. 1, by 
the Clar transformation, the one-to-one correspondence 
from ki to si can be found, the relation (4) being satisfied. 
At this stage, however, it is not certain if one and only 
one ki can be found for a given si. 

Next try to operate the sextet and counter-sextet rota- 
tions to the set of the {ki}. The resultant relationship 
among {ki} for graph 2 is a hierarchical structure and can 
be expressed by a directed rooted tree as shown in Fig. 
2, where all the entries in {ki} can find the corresponding 
nodes including the root. It is to be noted here that the 
two trees obtained by the sextet and counter-sextet 
rotations are not necessarily isomorphic as exemplified in 
Fig. 2. 

No exception to the above results could be found for 
all of the thin polyhexes studied. However, for fat poly- 
hexes some difficulties have been observed. We wil1 
develop the theory on thin polyhexes first and then 
extend it to fat polyhexes. 

In this section the relation (4) and other results 
obtained for thin polyhex graphs are summarized as 
Theorems. It was found that the key of the proofs is 
what is stated as the lemma, whose proof will be given in 
Appendix. 

Lemma 
For each polyhex graph G, there exists one and only 

one root Kekule pattern. 

From Lemma the following Theorem can be obtained. 

Theorem I 
BG( I) = K(G). 

Proof. Suppose the sets of ki, {kili = I, 2,. . . ,K(G)), 
and si, {s$ = 1,2, . . . ,B&l)}, for a given polyhex graph 
G. The set {ki} can be classified into several, say, m+ I 
classes’ with respect to the number of the proper sex- 
tets, and the set {s,} into the same number of classes with 
respect to the number of circles. Lemma ensures that for 
any graph there is a unique correspondence between 
such k, with no proper sextet (root Kekule pattern) and 
such si with no circle (zero-sextet pattern). Then con- 
sider the class of {ki} with one proper sextet rl and the 
corresponding class of {si}. Choose ki from the former 
class. Delete rl from G together with the bonds incident 
to it. The resultant graph is denoted as G @ rl. Since ki 
has only one proper sextet, there is no proper sextet in 
its G @ rl part, which is either a polyhex or a branched 
polyhex graph. In the latter case the terminal bonds are 
fixed to be double, and all the bonds adjacent to them 
should be single. Then delete all the fixed double and 
single bonds from G 0 rl, If the resultant truncated graph 
still has branches, repeat the above process until we get 
either a polyhex graph(s) or a vacant graph, for which 
there is one and only one root KekulC pattern (including 
the case of a vacant graph) according to Lemma. Then 
by tracing back all the processes we get a unique Kekule 
pattern which has a proper sextet in rl but nowhere else. 

A successive application of this reasoning leads to the 
conclusion that if any two ki and ki are chosen the 
corresponding s,(= C(ki)) and sj should be different. That 
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Fig. 2. Directed rooted trees of the Kekult patterns of graph 2 
derived from the sextet (a) and counter-sextet (b) rotations. The 

numbers refer to Fig. I. 

is 
C(kJ f C(kJ for i # j, (8) 

which means 

or 

IMl~ KSJI* (9’) 

It follows from the definition of the sextet pattern that 
for any si there is at least one k; leading to si. Further, it 
is apparent that for two different si and sj the cor- 
responding ki and kj should be different. For the zero- 
sextet pattern Lemma ensures the existence of the 
uniquely corresponding root Kekule pattern which is 
different from any of the Kekule patterns corresponding 
to the rest of the sextet patterns. Now we have 

IS) C IkJ (10) 

or 

By combining the relations (9) and (10) Theorem 1 can be 
proved. 

Although the variable x in the sextet polynomial B&x) 
does not mean anything other than what holds the power 
k and the coefficient r(G, k), BG(x) can be differentiated 
formally with respect to x as 

d 
B&x) = h BGW. 

Then it is easy to get the second Theorem: 

Theorem 2 
hexspon in G 

Bb(~)=~T,k*r(G,k)= 7 K(G@rJ. (11) 

dAs Hemdon RandiC’ and Aihara* independently pointed out 
that the number K(G @ ri) can be used as a measure of aromatic 
character of the component hexagon. 

Proof. Consider the gaph G@r,. Theorem I ensures 
that K(G 0 rJ is equal to the number of the sextet 
pattrns of G 0 c, which is equal to the number of such 
sextet patterns of G that have a circle in ring ri. If the 
sum of K(G @ r,) is to be taken over all the hexagons, ri’s 
of G, each sextet pattern si is counted just the same 
times as the number k of the aromatic sextets in sis Then 
the summation of K(G 0 rr) over i is turned out to be the 
counting of all the circles in the set of {s;}, which can be 
obtained by the sum of k. r(G, k) over k. Thus we get 
Theorem 2. 

For graph 2 the K(G 0 I-J value for each hexagon can 
be obtained from Fig. I asd 

3 d 2 2 1 

Make sure that each of these numbers K(G 0 r,) can be 
exactly obtained by counting the number of such sextet 
patterns that have circles in a given hexagon rr. The total 
sum of the circles are obtained either by adding these ‘, 
numbers as 2 t 2 t I+ 3 = 8 or by adding k r(G, k) as 
I x 4 + 2 x 2 = 8. These relations are generally valid for 
all the thin polyhexes. 

The hierarchical tree of the set of the Kekule patterns 
shown in Fig. 2 can be expressed as the third Theorem: 

Theorem 3 
The sextet rotation to the set of the Kekule patterns 

{ki} gives a directed tree graph with a root (root KekulC 
pattern) representing a hierarchical structure of {ki}, 
where each point corresponds to a Kekule pattern. 

Proof. Let {ki} be the set of the Kekule patterns of a 
given polyhex graph and k, be the root Kekult pattern. If 
R(ki) = kj, draw an arrow from point pi to pi* and we get 
a directed graph. Since R(ki) = 4, the outdegree of pI is 
zero. As Lemma ensures the existence of one and only 
one root Kekule pattern, the obtained graph should be a 
rooted graph. By the definition of the sextet rotation R, 
one and only one arrow starts from each point pi (i f 1). 
Here we note that each hexagon in any thin polyhex 
graph has at least a peripheral edge. Let the hexagon r be 
a proper sextet in a Kekult pattern ki of a thin polyhex 
graph. If we operate the sextet rotation R on ki to get 
another KekulC pattern kit,, r should be an improper 
sextet in ki+l. In the same way we can get Kekuli 
patterns ki+*, ki+,, etc. by operating R on ki+l, ki+z, etc. 
Without loss of generality we can suppose that one of 
the peripheral edges I of r is single in ki, and double in 
ki+l. As long as I is a double bond, r cannot be a proper 
sextet, and I belongs only to r. Then the sextet rotations 
to ki+l, ki+z, etc. cause no change in I. That is, for any j 
(= 1,2,3, m m .), ki f ki+j. Th is means that the directed 
graph obtained by the sextet rotation to the set of the 
Kekule patterns has no cycle, and therefore it is a 
directed rooted three. 

Extention to “fat polyhex graphs” 
As mentioned above, Theorems 1 and 2 do not hold for 

fat polyhex graphs, i.e. the carbon atom skeletons of 
pericondensed aromatic hydrocarbons (perifusenes) 
which contain the coronene skeleton, 9. The sextet 
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polynomial of coronene would be 

I&(x)=I+7xt9x2t2x’ 

giving Be(l) = 19 and B&( 1) = 31, whereas K(G) = 20 and 
ZK(G@ri)=32 (Fig. 3, where the Kekule and sextet 
patterns are overlapped).’ 

The failure of Theorems 1 and 2 can be remedied if the 
second term in B&x) is corrected to 8x. See the patterns 
2 and 3 in Fig. 3. Although the two Kekule patterns are 
distinct, the Clar transformation on them gives the same 
sextet pattern 

@ 

0 

Note that for a given arrangement of the proper sextet in 
the central hexagon two different arrangements of the 
nine alternating double bonds around the peripheral 18- 

‘The K(G @ rJ value for the central hexagon is two, and that 
for each of the peripheral hexagon is five (Fig. 3). Thus we get 
K(G@rJ=lx2+6x5=32. 

Fig. 3. KekulC and sextet patterns of coronene. See Fig. 4 for the 
sextet polynomial and Fii. 9 for the hierarchical tree structure. 

membered ring of coronene are possible. Let such an 
“octadecet” as in these two patterns be called as a 
“super sextet”. Further, let such a super sextet as in 
pattern 3 in Fig. 3 be called as a “proper super sextet” 
and be denoted by the concentric double circles as 
shown in Fig. 4. Now if this twentieth sextet pattern is 
assumed to contribute a term x in Be(x), Theorems I and 
2 are automatically satisfied for coronene skeleton (Fig. 
4). 

It can be shown that the concept of the super sextet 
may be extended to such a generalised “(4j t 2)-et” sur- 
rounding k disjoint but resonant sextets and contributes 
a term xk to BG(x) as in Fig. 5. In Fig. 6 are shown how 
Theorems 1 and 2 hold for a large network as “super 
coronene” by introducing the concept of the super 
sextet. 

It was found that for necklace-like molecules the one- 
to-one correspondence bwtween the KekulC and sextet 
patterns can also be obtained if the definition of the 
sextet is extended to the generalised sextet as exem- 
plified in Fig. 7. Forma1 application of the Clar trans- 
formation to any one of the three Kekule patterns k,-k, 
in Fig. 7 would yield the zero-sextet pattern sI. However, 
the (4j +2)-membered holes, or generalised hexagons in 
k, and kr can be regarded, respectively, as improper and 
proper sextets, and thus the set of the five alternating 
double bonds along the hole may be called to form an 
enlarged or a generalised sextet. Further, the Clar trans- 
formation can formally be extended to the transfor- 
mation of k, in Fig. 7 to give the sextet pattern s3 with a 
super sextet. Thus the three Kekuli patterns k,-k3 are 
transformed into distinct generalised sextet patterns sI- 
s3. Observe the one-tonne correspondence between k,- 
k, in Fig. 7 and the patterns l-3 in Fig. 3. The corrected 
sextet polynomial 

BG(x) = I t 10x t 18x2+ 10x’+ x4 

gives the correct values for K(G) and K(G @ ri) as in Fig. 
8. 

Similarly the Be(x) of graph 11 can be obtained as 

Be(x) = I t 14x t 48x2 t 76x3 t 48x’+ 12x5 t x6 

with a generalised sextet pattern lla and a super sextet 

super sextet 

,@ $@ @ @;6 
-” 

I 

gzk.6 +z!& i> 

9x2 2x3 

B,(x)-1+8x+9x2+2x3 I$( I) =KtG) 

~~!x)=8+18x+6xz B&I= 1 K(G8r.l 

Fig. 4. Sextet polynomial and sextet patterns of coronene. 
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X 

X2 X2 X3 

Fig. 5. Examples of super sextets and the correction terms for the sextet polynomial. 

K(G)*B,(l) =980 

X K(Gt?r,l =Bdtl) - 3308 

super sextets 

x6 x6 x6 

I 8x 

X2 

’ 32x3 

Fig. 6. Super sextets of “super coronene” and the corresponding correction terms to give the sextet polynomial 
Bn(x) = 1 t 27x t 162x* t 350x3 t 31Ox’t 114x’ t 15x6 t x’. 

pattern lib, 

Ilb 
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k,@-@ s 

k2@- $?$j) 5.? 

a$$&+ (g?gz& s3 

Kekulb pat’errs genera I ,sed 
sexte’ pcitter-s 

Fii. 7. Generalised sextet patterns including the enlarged (s2) and 
super (s3) sextets for the necklace-like molecule. See also Fig. 8. 

-- 
r(G,O)=l 

x4 x2 

unambiguous definition of the super sextet. However, as 
has been demonstrated in the several examples, one can 
uniquely assign the super sextet patterns for a given fat 
polyhex graph so that all of Theorems 1-3 hold. It should 
be pointed out here that the mathematical properties of 
polyhex graphs discussed in this paper not only are very 
useful for interpreting the various resonance-theoretical 
analyses on the aromatic characters for the benzenoid 
hydrocarbons?.” but also have a close resemblance with 
those of the king and domino polynomials for the square 
lattice.” 

Proof of Lemma’ 

APPENDIX 

Let {P} be the set of polyhex graphs. If a certain bond is fixed 
to be single or double in the whole set of the KekulC patterns of a 
graph GE (P}, let it be called as an F-bond. The following remark 
can be obtained from the fact that any proper sextet can always 
be transformed into an improper sextet. 

enlarged s super 5 

@t!ci5+ m 

X2 

X4 x2 x2 x2 

-7 ..L 

r(G,3)=IO 

Fig. 8. Sextet patterns and r(G. k)‘s of the molecule in Fig. 7. 

Although the definition of the Clar transformation had 
to be extended to the super and generalised sextets, the 
sextet rotation need not be modified even in the case 
where super and/or generalised sextets are introduced. 
Theorem 3 has not been proved for fat polyhex graphs 
rigorously, but its validity is believed by the present 
authors from an extensive experience and reasoning. 
This is exemplified in Fig. 9 where the set of the twenty 
Kekule patterns of coronene form a hierarchical tree by 
the sextet rotation. 

At the present stage it is very difficult to give an 

‘Contribution by the Ochanomizu group. 

0 0 0 0 
0 

r’ 
/ 

rK,4)=I 

Remark I. If a hexagon in G contains at least one F-bond, 
neither a proper nor an improper sextet can be drawn in the 
hexagon. 

This is exemplified for graph 12, where all of the central bonds 
are single F-bonds, and no KekulC pattern can be drawn with a 
sextet in the central two hexagons. 

12 
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Fig. 9. Hierarchical tree of the KekulC patterns for cononene 
obtained by the sextet rotation. The numbers refer to Fig. 3. 

Let us consider the subgraph G-F of a polyhex graph G 
obtained by deleting all those hexagons which contain at least 
one F-bond. The resultant graph G-F may have one or more 
polyhex components. Let {P) be the set of such polyhex graphs 
that have no F-bond. From this definition {P}C{P}. Graph I2 
(c(P)) is reduced to a couple of graphs 

belonging to (i}. The following two remarks can easily be infer- 
red from the above argument but deserve !o be noticed. 

&murk 2. For a given bond I of GE(P} there exists at least 
one KekulC pattern in each of the cases where I is chosen as 
double and single. 

G G-F’ 

‘cl 1 

@ 

> 

> 

Fig. AZ. 

Remark 3. If Lemma is valid for G E (P}. it is valid also for 
IPI. 

Let us call as the row of bonds the set of all the vertical bonds 
like F-bonds in Graph 12. Then we have. 

Rem& 4. If all the bonds belonging to one row of bonds are 
single in a KekulC pattern of a polyhex graph, they are single 
F-bonds. 

Proof. Consider a KekulC pattern for a polyhex graph G in 
which all the bonds belonging to one row of bonds are single. Let 
rhe set of those single bonds be L= {I$ = I, 2,, . .} and the 
subgraphs of G obtained by deleting all 1,‘s from G be g and g’, 
both of which are even bipartite graphs. The numbers of the 
starred and unstarred atoms are the same for each of g and g’. 
Suppose that Ii connects atom ai in g with b, in g’. Without loss of 
generality one can assign a, as starred and bi as unstarred. Then it 
is observed that all the a,‘s and his are, respectively, starred and 
unstarred (Fig. Al). 

Consider another KekulC pattern in which Ii is chosen as 
double. Since g-a, has an odd number of atoms, in {Ii) an odd 
number of I!‘s should be double besides Ii. Let the set of such a,‘s 
that are incident to the double bonded l/s be A. Since all the a;s 
are starred, the number of the starred atom in the subgraph g-A 
is less than that of the unstarred. Thus no KekulC pattern would 
be drawn in g-A when 1, is double. This contradiction completes 
the proof. 

In the following discussion let us prove Lemma by disproving 
its reciprocal. If Lemma is not true, there exists the smallest 
graph G,, for which Lemma does not hold. Then there are two 
possible cases in which i) G,, has no root KekulC pattern, and ii) 
G,, has more than one root KekulC patterns. From Remarks 1 and 
3 one can assume without loss of generality that Go E {P}. Let I,, 
be one of the farthest (vertical) left bonds of GO. 

Fig. Al. An example of polyhex with a row of single bonds. 

roof Kekuli pattern 

G-F’ G 

$) -+iF+ 
Examples of polyhexes and their root KekulC patterns. 

I 
\\ 

0 11;; 
/ 
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Consider a case in which b is fixed to be double. From Remark REFERENCES 
2, we can draw at least one Kekule pattern with b as double, but ‘G. W. Wheland, J. Chem. Whys. 3,356 (1935). 
in whatever case a proper sextet cannot be drawn in the hexagon *M. Gordon and W. H. T. Davison, Ibid. 20.428 (1952). 
r, containing b. If certain bonds in Go hecome to be fixed as ‘D Cvetkovic, 1. Gutman and N. Trinajstic, Chem. Phys. Lelt. 
double or single when I,, is fixed to be double, let us call them as 16. 614 (1972). 
P-bonds. Then delete from Go those hexagons which contain at ‘W. C. Herndon, Tetrahedron 29, 3 (1973). 
least one F-bond. The resultant subgraph Gn - F’ is obviously ‘M. RandiC, 1. Chem. Sot. Faraday Trans. II. 72, 232 (1976). 
composed of polyhexes which belong to {P), and are smaller than ‘W C. Herndon and M. L. Ellzey, Jr., 1. Am. Chem. Sot. W, 
Go, Thus one can draw one and only one root KekulC pattern for &I (1974). 
G,,-F’, and by tracing back the deleted F-bonds we can get one ‘M. RandiC, Tefrahedron 30, 2067 (1974); Ibid. 31, 1477 (1975). 
and only one root Kekule pattern for Go (Fig. A2). ‘J. Aihara, Bull. Chem. Sot. Jpn. 49, 1429 (1976). 

Now if Lemma is not true, we are left with only the possibility ‘H. Hosoya and T. Yamaguchi, Tetruhedrun Letters 4659 (1975). 
that there exists the smallest graph G,E(P} for which a root “M J. S. Dewar and H. C. Longuet-Higgins, Proc. Roy. Sic. 
Kekult pattern can be drawn with I,, as single. If this is the case, L&don AZ14,482 (1952). 
any root KekulC patterns for Go should have the following “A Graovac, I. Gutman. N. TrinajstiC and T. Zivkovic, Theor. 
structure in which all the bonds in the km. Acra Berl. 26.67 (1972). 

“A Graovac, 1. Gutman. M. RandiC and N. Trinajstic, 1. Am. 
&em. Sot. 95.6267 (1973). 

“M Rand& Chem. Phys. Left. 38, 63 (1976); 1. Am. Chem. Sot. 
991444 (1977); Mol. Phys. 34, 849 (1977); Tetrahedron 33, 1905 
(1977). 

“E Clar, The Aromatic Sextet. Wiley, London (1972). 
“F: Hararv and R. C. Read. Proc. Edin. Math. Sec. 17, I (1970). 

row of bonds including b are single so as not to have any proper 
“F. Harary, private communication. 

sextet. Then from Remark 4, Go would -have F-bonds in con- 
I’M. Aida and H. Hosoya, Tetrahedron 36, 1317 (1980). 

tradiction to the assumption that GO~ {P}. Now the proof of 
“A. Motoyama and H. Hosoya, 1. Math. Phys. 18, 1485 (1977). 

Lemma is completed. _ 


